11 research outputs found

    Second Order General Slow-Roll Power Spectrum

    Full text link
    Recent combined results from the Wilkinson Microwave Anisotropy Probe (WMAP) and Sloan Digital Sky Survey (SDSS) provide a remarkable set of data which requires more accurate and general investigation. Here we derive formulae for the power spectrum P(k) of the density perturbations produced during inflation in the general slow-roll approximation with second order corrections. Also, using the result, we derive the power spectrum in the standard slow-roll picture with previously unknown third order corrections.Comment: 11 pages, 1 figure ; A typo in Eq. (38) is fixed ; References expanded and a note adde

    Completing Natural Inflation

    Full text link
    If the inflaton is a pseudo-scalar axion, the axion shift symmetry can protect the flatness of its potential from too large radiative corrections. This possibility, known as natural inflation, requires an axion scale which is greater than the (reduced) Planck scale. It is unclear whether such a high value is compatible with an effective field theoretical description, and if the global axionic symmetry survives quantum gravity effects. We propose a mechanism which provides an effective large axion scale, although the original one is sub-Planckian. The mechanism is based on the presence of two axions, with a potential provided by two anomalous gauge groups. The effective large axion scale is due to an almost exact symmetry between the couplings of the axions to the anomalous groups. We also comment on a possible implementation in heterotic string theory.Comment: 9 pages, 1 figur

    The Price of WMAP Inflation in Supergravity

    Get PDF
    The three-year data from WMAP are in stunning agreement with the simplest possible quadratic potential for chaotic inflation, as well as with new or symmetry-breaking inflation. We investigate the possibilities for incorporating these potentials within supergravity, particularly of the no-scale type that is motivated by string theory. Models with inflation driven by the matter sector may be constructed in no-scale supergravity, if the moduli are assumed to be stabilised by some higher-scale dynamics and at the expense of some fine-tuning. We discuss specific scenarios for stabilising the moduli via either D- or F-terms in the effective potential, and survey possible inflationary models in the presence of D-term stabilisation.Comment: 15 pages, 6 figures, plain Late

    Primordial fluctuations and cosmological inflation after WMAP 1.0

    Full text link
    The observational constraints on the primordial power spectrum have tightened considerably with the release of the first year analysis of the WMAP observations, especially when combined with the results from other CMB experiments and galaxy redshift surveys. These observations allow us to constrain the physics of cosmological inflation: (i) The data show that the Hubble distance is almost constant during inflation. While observable modes cross the Hubble scale, it changes by less than 3% during one e-folding: d(d_H)/dt < 0.032 at 2 sigma. The distance scale of inflation itself remains poorly constrained: 1.2 x 10^{-28} cm < d_H < 1 cm. (ii) We present a new classification of single-field inflationary scenarios (including scenarios beyond slow-roll inflation), based on physical criteria, namely the behaviour of the kinetic and total energy densities of the inflaton field. The current data show no preference for any of the scenarios. (iii) For the first time the slow-roll assumption could be dropped from the data analysis and replaced by the more general assumption that the Hubble scale is (almost) constant during the observable part of inflation. We present simple analytic expressions for the scalar and tensor power spectra for this very general class of inflation models and test their accuracy.Comment: 19 pages, 5 figures; section on the classification of models in the plane of tilt and tensor-to-scalar ratio added, references adde

    Multiple-field inflation and the CMB

    Full text link
    In this paper, we investigate some consequences of multiple-field inflation for the cosmic microwave background radiation (CMB). We derive expressions for the amplitudes, the spectral indices and the derivatives of the indices of the CMB power spectrum in the context of a very general multiple-field theory of slow-roll inflation, where the field metric can be non-trivial. Both scalar (adiabatic, isocurvature and mixing) and tensor perturbations are treated and the differences with single-field inflation are discussed. From these expressions, several relations are derived that can be used to determine the importance of multiple-field effects observationally from the CMB. We also study the evolution of the total entropy perturbation during radiation and matter domination and the influence of this on the isocurvature spectral quantities.Comment: 24 pages. References added, some very minor textual changes, matches version to be published in CQ

    Brany Liouville Inflation

    Get PDF
    We present a specific model for cosmological inflation driven by the Liouville field in a non-critical supersymmetric string framework, in which the departure from criticality is due to open strings stretched between the two moving Type-II 5-branes. We use WMAP and other data on fluctuations in the cosmic microwave background to fix parameters of the model, such as the relative separation and velocity of the 5-branes, respecting also the constraints imposed by data on light propagation from distant gamma-ray bursters. The model also suggests a small, relaxing component in the present vacuum energy that may accommodate the breaking of supersymmetry.Comment: 23 pages LATEX, two eps figures incorporated; version accepted for publication in NJ

    Reconstructing large running-index inflaton potentials

    Full text link
    Recent fits of cosmological parameters by the first year Wilkinson Microwave Anisotropy Probe (WMAP) measurement seem to favor a primordial scalar spectrum with a large varying index from blue to red. We use the inflationary flow equations to reconstruct large running-index inflaton potentials and comment on current status on the inflationary flow. We find previous negligence of higher order slow rolling contributions when using the flow equations would lead to unprecise results.Comment: Final version to appear in Class. Quant. Grav. References adde

    Curvaton Dynamics in Brane-worlds

    Get PDF
    We study the curvaton dynamics in brane-world cosmologies. Assuming that the inflaton field survives without decay after the end of inflation, we apply the curvaton reheating mechanism to Randall-Sundrum and to its curvature corrections: Gauss-Bonnet, induced gravity and combined Gauss-Bonnet and induced gravity cosmological models. In the case of chaotic inflation and requiring suppression of possible short-wavelength generated gravitational waves, we constraint the parameters of a successful curvaton brane-world cosmological model. If density perturbations are also generated by the curvaton field then, the fundamental five-dimensional mass could be much lower than the Planck massComment: 47 pages, 1 figure, references added, to be published in JCA

    What does inflation really predict?

    Full text link
    If the inflaton potential has multiple minima, as may be expected in, e.g., the string theory "landscape", inflation predicts a probability distribution for the cosmological parameters describing spatial curvature (Omega_tot), dark energy (rho_Lambda, w, etc.), the primordial density fluctuations (Omega_tot, dark energy (rho_Lambda, w, etc.). We compute this multivariate probability distribution for various classes of single-field slow-roll models, exploring its dependence on the characteristic inflationary energy scales, the shape of the potential V and and the choice of measure underlying the calculation. We find that unless the characteristic scale Delta-phi on which V varies happens to be near the Planck scale, the only aspect of V that matters observationally is the statistical distribution of its peaks and troughs. For all energy scales and plausible measures considered, we obtain the predictions Omega_tot ~ 1+-0.00001, w=-1 and rho_Lambda in the observed ballpark but uncomfortably high. The high energy limit predicts n_s ~ 0.96, dn_s/dlnk ~ -0.0006, r ~ 0.15 and n_t ~ -0.02, consistent with observational data and indistinguishable from eternal phi^2-inflation. The low-energy limit predicts 5 parameters but prefers larger Q and redder n_s than observed. We discuss the coolness problem, the smoothness problem and the pothole paradox, which severely limit the viable class of models and measures. Our findings bode well for detecting an inflationary gravitational wave signature with future CMB polarization experiments, with the arguably best-motivated single-field models favoring the detectable level r ~ 0.03. (Abridged)Comment: Replaced to match accepted JCAP version. Improved discussion, references. 42 pages, 17 fig
    corecore